
, 
t4 

s (ACCESSION NUMBER) 6-19043 ITHRUI I '  

z (NASA ce70Kw CR OR TMX OR AD NUMBER) 

QUARTERLY PROGRESS REPORT 

For Period 

15 September through 31 December 196.5 

INVESTIGATION OF O,'?'i~CUATION OF 

ATTITUDE CONTROL 2YZTL;I-S 

For 

GPO PRICE $ 

J e t  P r o p l s  i on Laboratory 
CFSTI PRICE(S) $ 

Microfiche (MF) 175 - 
ff 653 July 65 

4800 Oak Grove Drive 

Pasadena, Cali ' o r n i a  

School of E lec t r i ca l  EnEineering 

Furdue UrLversity 

Lafayette, Indiana  47907 

ICObEI 

i 

J. Y. S .  LUH, Pr incipal  Investigator 



Thia work waa pertbillrad for the Jet Propulsion Labrabt~?, 
California Institute of Technology, sponsored by the 
National Aeronautics and Space Administration under 
Cona.~r WS7-100. 

QUARTERLY PROGRESS REPORT 

For P e r i o d  

1 5  September through 31 December 1965 

INVESTIGATION OF OPTIMIZATION OF 

A T T I m E  CONTROL SYSTZIG 

For 

Jet Pr oguls i on Labor a t  o r y  

4800 Oak Grove Drive 

Pasadena, California 

Contract No. 950670 

School of Elec t r ica l  Engineering 

Purdue University 

Lafayette, Indiana 47907 

J. Y. S.  LUH, Pr incipal  linrestigator 



Page . 
PART A - G m L  DISCUSSION 

1. Intro@uction 
2.  Progress During Reportin@; Period 

2 .1  Coordination Meetings 
2.2 Technical Progress 

3. Professional Contributors 

PART B - OPTIMAL COirrROL I N  BOUNDED 
F"4SE-COORDDUTE PROCESS 

1. Introduction 
2. His tor ica l  Development 
3 .  Boblem Statement 
4. Technical Approach 

4 . 1  Background Results 
4.2 Analysis 
4.3 Summary of Preliminary Results 

5 .  Plan of Future Work 
6. ApFendix - O p t i m a l  Control of an Unstable Booster 

Tables I - V I  

2 

5 

5 
7 
10 
11 
11 
11 
13 
14 
16 

29 

References 35 

PART C - STOCHASTIC OPTIMAL CONTROL 37 

1. Introduction 
2.  Brief Review of Stochastic Control Problems 
3 .  Problem Statement 
4. Technical Approach 

Method of Approach 
Preliminary Results 
Plan of f i t u r e  Vork 

Appendix I 
Appendix I1 
Appendix I11 
Appendix IV 

45 
45 
46 
47 
49 
52 
58 
62 

References 69 



-2- 

PART A 

GENERAL DISCUSSIOrY 

1. INTRODUCTION \ 

This i s  the  s ix th  quarterly report  submitted i n  accordance 

with the  provisions of Contract No. 950670, "Investigation of 

Optimization of Atti tude Control Systems." 

September 15, 1965 through December 31, 1965. 

It covers the period 

This report  i s  i n  three  p a r t s .  The first  pa r t  summarizes the  

progress during the  reporting period. The technical  discussions 

a re  given i n  Parts B and C ,  i n  which the plans af f'uture work a r e  

also included . 

2 -  PROGRESS DURING REPORRaG PERIOD 

2 . 1  Coordination Meetings 

A se r i e s  of meetings were hold a t  Purdue University on October 26, 

1965. Those present a t  d l  the meetings included: 

J .  C .  Micklas, and A .  E .  Cherniack of J e t  Propulsion Laboratory, 

and J. Y. S. Luh or" Fia=che Lkiversity. J. C . Hancock, D.  R.  Anderson, 

T.  J .  Williams, G .  E .  O'Connor, and J. S. Shaf'ran of Purdue University 

were present a t  some of the  meetings. 

The discussions brought out t h e  following: 

(a) Bath J .P .L .  and Purdue should seek the  research areas which 

a re  of i n t e re s t  t o  both pa r t i e s .  Tentatively, three pos- 

s i b l e  research areas were discussed; v iz . ,  antenna pointing, 

sens i t ive  analysis, and sof t  landing problems. 
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(b) The t h i r d  (also the  l a s t )  annual report  i s  due on or  

before July 30, 1967. The research f'und for t he  t h i r d  

year period, however, i s  not guaranteed. 

2.2 Technical Progress 

I n  connection with the  soft landing problems, an optimal 

control problem i n  bounded phase-coordinate and bounded control 

processes w a s  studied. The general theory f o r  a l i nea r  autonomous 

system was developed. Based on t h e  theory, a method of determining 

t h e  optimal control  w a s  derived. The complete technical  discussion 

together with the future  research plan i s  presented i n  Part B. 

This method w a s  then applied successfully t o  the " the-opt imal  

control  of an unstable booster with actuator posi t ion and r a t e  

limits." The solut ion i n  d e t a i l  i s  a l s o  included i n  Past B. The 

r e s u l t s ,  when evaluated with nunerical data,  are  i n  agreement with 

those obtained by Friedland [SO] and Tookey [21] who solved the 

problem by other methods including computer simulation. 

The control  problem of antenna pointing was a l s o  investigated.  

The problem w a s  formulated as a s tochast ic  optimal control  problea 

i n  which t h e  probabi l i ty  t h a t  t h e  antenna pointing a t  t he  desired 

d i rec t ion  within an allowable tolerance i s  maximized. This scheme, 

when f u l l y  developed, has a potent ia l  application t o  the programmed 

pointing system t o  improve i ts  accuracy. 

and t h e  plan of f'uture work are given i n  Part  C .  

The technical  discussion 

The t h e o r e t i c a l  investigation of t he  s e n s i t i v i t y  analysis was 

j u s t  begun. No s ignif icant  r e s u l t s  were achieved up t o  date and 
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hence no de ta i led  discussion will be presented i n  this report .  

"he method of approach follows the  idea given i n  the  F i r s t  Annual 

Report submitted t o  JPL i n  January 1965, pp. 79-87. Instead of 

using spec i f ic  physical  p lan ts  (such as t h e  two p lan ts  chosen i n  

t h a t  repor t ) ,  a general  plant  model i s  u t i l i z e d .  

however, will be l i n i t e d  t o  t h e  s i q l e  l i n e a r  feed-back type and pos- 

s i b l y  with an addi t iona l  cubic t e rn .  The choice of such simple form 

of control  function i s  motivated by the requirement of hardware 

s i n p l i c i t y  . 

The control,  

3 .  - PROFESSIONAL CONTRIBUTORS 

Professional personnel contributing t o  progress during t h e  

reporting period a re  as follows: 

J. Y .  S .  Luh, Principal Investigator 

G .  E .  O'Connor, Staf f  Researcher 

J. S .  Shafran, Staff  Researcher 
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PART B 

OPTIMAL CONTROL IN BOUNDED PHASE-COORDINATE PROCESS 

1. INTRODUCTION 

Bounded phase-coordinate control  problems a r i s e  na tura l ly  i n  

many prac t i ca l  appl icat ions.  

i s  a t r i v i a l  example. I n  many f l i g h t  vehicles, engine deflection, 

angle of a t tack  and bending moment contribute t o  the  phase-coordinate 

cons t ra in ts .  For instance, i f  t he  cont ro l le r  input i s  engine gimbal 

r a t e ,  t he  engine displacement may be considered as a phase-coordinate of t h e  

dynanical system. Normally, the allowable engine displacements a re  

sunall; an e f f i c i e n t  use of t h e  avai lable  control  input of'ten demands 

operating on the  engine displacement limit. Unfortunately, such 

i n h i t i o n  i s  not always correct .  

input implies not only operating a t  the  displacement limit, but a l s o  

considering the  displacement l i m i t  exp l i c i t l y  i n  the  over-al l  design 

of t he  cont ro l le r .  

by a given mini-nization c r i te r ion ,  and problems of this type a r e  ca l led  

o p t h a l  control  problems w i t h  phase-coordinate inequal i ty  constraints .  

The non-crush landing of a spacecraft  

The e f f i c i e n t  use of t h e  control  

The term "e f f i c i en t  use" can be spec i f i ca l ly  defined 

A t  the  present time, available methods of solving this type of 

problem are  t i m e  consuming, thus preventing the  poss ib i l i t y  of on-line 

operation using current ly  available f a c i l i t i e s .  This research will 

attempt t o  determine the  optimal cont ro l  as an e x p l i c i t  time f'unction 

and thereby eliminate the  d i f f i cu l ty  of excessive computing time. 

I n  the  following sections,  a discussion on the  research problem 

is presented. Section 2 gives a b r i e f  survey on t h e  known r e s u l t s  f o r  
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t he  bounded phase-coordinate control problems. It a l s o  motivates 

the problem f o r  this research. 

is under investigation. 

Section 3 defines t h e  problem that 

Section 4 discusses the  method of solving 

the problem. I n  this Section 4, a summary i s  made f o r  t h e  general 

theory t h a t  i s  already known. Based on an analysis  of t he  known 

theory, the problem i s  reformdated i n  such a manner as t o  lead t o  

a method t h a t  determines the optimal controls as e x p l i c i t  time 

functions. This method i s  then applied t o  the  time-optimal control  

of an unstable booster. A brief summary of the final r e s u l t s  for  

this par t icu lar  example i s  t h e n  presented. The derivations and 

discussions a r e  given i n  d e t a i l  i n  t he  Appendix. Section 5 outl ines  

the  plan of future  work in a logical  and sequential  order.  
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2. HISTORICAL IxwEIaPKElqT 

In recent years, considerable attention has been given to optimizing 

systems for which the state variables are bounded. 

new. As indicated by Bolza [I, pp. 125-1261, Weierstrass formulated the 

analogous problems of calculus of variations with phase-coordinate inequality 

constraints in 1882, 8nd develoHd the "corner" conditions for the two-dimensional 

Lagrmge problems. The "corner" conditions deal with the discontinuities of 

the solution of the analogous problems. According to Bliss [2, pp. 431, the 

necessary and sufficient conditions for a minimum solution were studied sub- 

sequently by Caratheodory, Bolza, Dresden, Graves, Reid, Smiley, Bliss, and 

Underhill. 

The problem is not really 

/ 

Most of the studies w e r e  completed between 1904 and 1937. 

In 1961, Berkovitz [3] reduced the general control problem with constraints 

to a problem of calculus of variations. 

necessary conditions for the problem of calculus of variations into the necessary 

conditions for the optimal control was established, including the application of 

Pontryagin's maximum principle [ b ] .  

to control problems with phase-coordinate inequality constraints that do not 

explicitly involve the control variable. In an independent study, G8mkrelidze 

[ 5 ,  also Chapter VI of 41 treated the latter problem based entirely on the nrajdrmun 

principle. 

achieved by solving the relevant problem of calculus of variations. 

[7] studied the same problem by means of the dynamic programming formulation. 

In his discuseion, a translation of 

His results, however, are not applicable 

Berkovitz [6] then showed that C;emhrelidze ' 8  results could be 

Dreyfus 

His results are in agreement with that of Berkovitz [8]. 

sufficiency conditions were virtually Ignored. 

even when solutions do exist, %he necessary conditions derived by various 

authors are difficult to apply. 

Among all the studies, 

Por practical. applications, 

h r i n g  1961-1962, Chang derived a simpler necessary condition for a more 
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r e s t r i c t e d  c l a s s  of problems- 191, and existence theorems based on the  extension 

of Ascoli 's  Theorem [lo]. 

r e s t r a i n t  s e t ,  t he  necessary condition I s  also the su f f i c i en t  condition. An 

elegant  proof of the  necessity of the  condition can be reduced from Neustadt's 

recent work 1111 while a rigorous proof of theeufficiency i s  given by Russell 

[12, pp.26-301. 

establishes the  f a c t  t h a t  t h e  normal vector appearing i n  t h e  modified ad jo in t  

d i f f e r e n t i a l  equation i s  always outward with respect t o  the set of a t t a i n a b i l i t y ,  

and hence the necessary and su f f i c i en t  condition is relative* easy t o  apply. 

For l i n e a r  time-optimal control  systems with a convex 

This condition i s  an improvement on Gamkrelidze's results. It 

As t o  the  computational aspects of t he  problem, there  are essen t i a l ly  two 

c lasses  of methods. One c l a s s  i s  the  d i r ec t  method which includes the method 

of the  gradient ,  steepest-descent o r  t h e i r  equivalent.  The d i r e c t  method was 

studied by Dreyf'us (71, Denham [l3, 141 and Eryson [15] using the  necessary 

conditions of the optimal control,  and by Psi-, et  al. [16] using 

conditions both of the  optimal control  and Z'pm t he  calculus  of var ia t ions .  

The o ther  c l a s s  is the  ind i r ec t  method which was discussed by Kahne [17], Bo 

and Brentani (181, and Nagata, e t  a l .  [lg]. 

problem, each computational procedure requires e i t h e r  an iterative solut ion 

o r  a simulation on a s izable  computer. Since a new computation is  required 

f o r  each d i f f e ren t  i n i t i a l  state, the  poss ib i l i t y  of on-line operation using 

cur ren t ly  ava i lab le  f a c i l i t i e s  is  aut of t he  question. 

Because of the  nature of the  

An i d e a l  approach i s  t o  synthesize a so-called closed-loop optimal control-  

l e r  such that the control  input is a Function of the  current state. This problem, 

however, is too diff icul t  t o  solve.  

so-called open-loop optimal control  a6 an e x p l i c i t  time function f o r  each 

i n i t i a l  s t a t e .  

optimal control  problem, i s  complicated enough that no published results 

An a l t e rna t ive  approach is t o  obtain the  

I h b s  problem, although not so d i f f i c u l t  as the closed-loop 

are known. In tu8 research, w e  s h a l l  attempt t o  develop a new method 



t o  solve the opt- control problem with a bounded phase-coordinate. 

main effort will be devoted to deriving an algorithm for expressing the open- 

loop control law as a time function. Once this g o a l  is achieved, the closed- 

The 

loop control law will then be attempted. 

. 
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3 .  PROBUM STATEMENT 

The general problem of i n t e r e s t  i s  s t a t ed  as follows: Given a 

l i n e a r  control  process as described by the  d i f f e r e n t i a l  system 

2 = A ( t )  x + B ( t )  u ( t )  (1) 

where x and u ( t )  a r e  t h e  n-dimensional s ta te  vector and m-dimensional 

control  vector, respectively; A(t)  and B ( t )  a r e  n by n and n by rn 

matrices of measurable functions f o r  t i n  sone i n t e r v a l  [t o, til. Let 

G be a closed convex subset of E”, and n be a cornpact convex subset 

of E?. Let the cost  flmctional of control  be 

c (u)  = gCx(tJ3 + 

where f’ (x , t )  and h’ (u,t) 

continuously d i f fe ren t iab le  

convex and d i f f e ren t i ab le .  

t1 [fo ( x , t )  + he  ( u , t ) ]  d t  (2 1 
Jt 0 

are real-valued, non-negative, convex and 

functions with respect t o  t, while g i s  

The general  problem of optimal control  of 

bounded phase-coordinate systems i s  t o  choose an admissible control  

u ( t )  c C l  on t h e  t i m e  i n t e r v a l  [to, tl] which s t e e r s  t he  system (1) from 

i t s  given i n i t i a l  state 

at  time t 

t h e  cost  fbnctional i s  a m i n i m u m .  

x ( t o )  = xo a t  time to, t o  a point t a r g e t  i n  G 1 
such t h a t  t h e  response x ( t )  C G f o r  a l l  t €[to, tl], and 1’ 

The general  problem described above i s  d i f f i c u l t  t o  solve. Instead, 

solut ions of more r e s t r i c t e d  classes of problems will be attempted. 

a first step, we w i l l  seek the method of obtaining ana ly t ica l  expression 

A s  

of t h e  time optimal control ler  f o r  autononous processes. The processes 

are assumed normal so that  t h e  admissible extrema1 control i s  uiulque. 

Once t h i s  i s  completed, optimal. cont ro l  processes with i n t e g r a l  quadratic 

cos t  c r i t e r i a  wil l  be investigated.  
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4.1 Background Results 

The following is an outl ine of the  technica l  approach of our first attempt 

on a t i m e  optimal cont ro l le r  f o r  autonomous processes with a bounded phase- 

coordinate. Gamkrelidze [4, 51 and others have given necessary conditions 

t h a t  extremal controls  must satisfy. These necessary conditlonr imply t h a t  

an extremal control corresponds t o  a solut ion of a s e t  of ad jo in t  equations. 

The ad jo in t  solut ion has ce r t a in  jump discont inui t ies  allowed, and hence 

depends on a number of parameters representing: 

(a)  the  magnitudes of  t h e  number of jumps t h a t  appear i n  t h e  ad jo in t  

solut ion,  and 

(b) the  time lengths of the a r c s  of the  corresponding t raJec tory  which 

l i e  on aG, the  boundary of t h e  phase-coordinate r e s t r a i n t  s e t  G .  

The d iscont inui t ies  a re  allotred a t  points where the  t r a j ec to ry  (corresponding 

t o  an extremal cont ro l )  en ters  upon or e x i t s  from an a rc  on AG. 

These are  the general r e s u l t s .  They do not, however, indicate  spec i f i ca l ly  

a t  which points  the  t r a j ec to ry  en ters  upon the a rc ,  and when the t r a j ec to ry  

must e x i t  from it. T h i s  research w i l l  attempt t o  answer these ques- 

t i o n s .  The following analysis  w i l l  lead t o  a method t h a t  determines e x L r e d  

cont ro ls  as e x p l i c i t  time flmctions. Then these functions can be represented 

i n  terms of ad jo in t  solut ions.  A sufficiency condition given by Russell 1121 

shows t h a t  the  solut ions so  obtained are  optimal controls .  

4.2 Analysis 

Fbr a l i n e a r  autonomous process, t he  calculat ion of t r a j e c t o r i e s  by the  

"backing out of the  t a rge t "  procedure i s  va l id .  

a b i l i t y  K( t )  can be found f o r  every fixed time t .  

t h a t  each ee t  of a t t a i n a b i l i t y  K(t)  is within t h e  i n t e r i o r  of G, then it is 

known t h a t  K ( t )  I s  compact, convex and continuous i n  t .  

versality condition appl ies  a t  bK(t ) ,  the  boundary of K(t); and f o r  each point 

I n  so doing, a s e t  of a t t a i n -  

If t i s  s& enough such 

Moreover the trans- 



on the boundary, there I s  a corresponding unique and admissible extremal cont ro l .  

When t is  large,  some s e p n t s  of R(t)  may coincide with aG. 

by hypothesis, then K ( t )  i s  again convex; and Ressell [12, pp. 22-53] showed 

t h a t  : 

Since G i s  convex 

(a )  a t  the boundary of K(t), the  t ransversa l i ty  condition is  s t i l l  valid 
4 
i f  the corresponding ad jo in t  system I s  modified, and, 

(b) corresponding t o  each point on the  boundary, there  i s  a unique and 

admissible extremal control .  

Thus, by (a), f o r  every unit  vector 7 i n  E? there  i s  a state vector x 

corresponding t o  a point on aK(t) f o r  a f ixed t, such t h a t  t he  project ion 

P of x onto 7 i s  a maximum. € 3 ~  (a)  and (b) ,  the  corresponding unique and 

admissible extremal control,  which maximizes the projection, s t e e r s  t he  linear, 

normal, autonomous process from the  or igin t o  a f'urthest point x i n  a f ixed 

t i m e  t .  

This is  equivalent t o  the case that ,  with the  time sense reversed, the  

same extremal control  will steer t h e  s y s t e m  from x t o  t he  o r ig in  i n  a fixed 

t h  t where t is  minimal. Russe l l ' s  sufficiency condition [12] shows t h a t  

the unit vector 7 i s  the  ad jo in t  vector a t  t i m e  t, and the  extremal control  

so  obtained i s  the  time optimal control.  

'&us, t he  problem of determining a t i m e  optimal cont ro l le r  i s  now reduced 

t o  obtaining an admissible extremal control t h a t  maximizes the  project ion of 

a s t a t e  vec tor  x a t  a f ixed time t ( i n  t he  sense of "backing out of the t a rge t " )  

onto a unit ve'ctor. 

fixed f i n i t e  &E t and for every un i t  vector .  

it possible  t o  determine the extrema1 controls  as e x p l i c i t  t i m e  ftmctions. 

Once t h i s  i s  completed, the  state vector x ( t )  can be computed from the  va r i a t ion  

of parameters formula with the corresponding extremal control .  

In so doing, an extremal control  can be found f o r  every 

This method of approach makes 

As a last  s tep,  take the  l i m i t  of x ( t )  as t i m e  t appraoches i n f i n i t y .  If 
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all the state v a l e s  approach f.= as t approaches QD, then t h e  control led 

autonomous process i s  completely controllable.  If, however, some state var iables  

approach f 'inite l imi t ing  values, then these x ( t )  form an uncont ro lhble  region. 

It is qu2te natural  t h a t  a linear process i s  completely control lable  i f  the  

phase-coordinate i s  not bounded; but an uncontrollable region may exist f o r  

the same process i f  the  phase-coordinate i s  bounded. 

4.3 summary of  Preliminary Results 

The above method-of approach was applied Successfully t o  "the t i m e  optimal 

control  of an unstable booster wi th  actuator  posi t ion and rate limits". 

optfnral control  function and t he  unstable region w e r e  obtained. 

when evaluated with numerical data, are i n  agreement with those obtained by 

The 

The results, 

Friedland [ZO] and Toohey [Zl] who solved t h e  problem by other  methods including 

computer slmulation. The derivat ion of t he  optimal control  f'unction and the  

unstable region via the  method outlined i n  t h i s  r e p o r t ' i s  given i n  

the  Appendix as an i l l u s t r a t i v e  example. 
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A preliminary study of a hamonlc o s c i l l a t o r  with bounded amplitude and 

bounded rate control  i s  r e q u i r e d .  

proposed ppblem, w i l l  give the  information on the  form of the  time-optimal 

control  function f o r  a system having a pa i r  of purely imaginary cha rac t e r i s t i c  

mots. 

parison with the  unstable booster problem discussed i n  the Appendix. 

of the  nature of osc i l l a t ion ,  the control var iab le  w i l l  en t e r  upon and exit 

from i t s  bound as of ten  as the  time duration permits. 

The next s t ep  w i l l  be a study of an underdamped osc i l l a to ry  p lan t  with 

The inves t iga t ion  Kill y ie ld  the  nature 

This study, although it does not solve the  

It i s  an t ic ipa ted  that t h i s  problem w i l l  be more complicated i n  com- 

Because 

I bounded amplitude and rate control .  

of the  time-optimal control  f'unction for a process with a pair of complex 

conJugate cha rac t e r i s t i c  roots. 

A t  t h i s  point,  the  research can be divided i n t o  th ree  parallel paths: 

(a) extend t h e  study t o  the  sane processes but  with i n t e g r a l  quadratic cost  

c r i t e r i a ,  (b) independently sirmrlate the same problems on a computer and campare 

the  data so obtained aga ins t  those from ana ly t i ca l  reaul t s ,  and ( c )  study the  

same time-optimal control  problems ana ly t i ca l ly  except t h a t  one of the  state 

var iab les  be also bounded (so f a r  t h e  bound is only applieci t o  the augmnted 

state var iab le ,  v i z .  u = 

t h a t  the  ad jo in t  solut ion has ce r t a in  jump d iscont inui t ies .  

results do not ind ica te  how many d iscont inui t ies  w i l l  occur. 

study with only one bounded state var iable  (see Appendix for t he  unstable 

booster) ,  there  I s  a t  most one diecontinuity which can be arranged a t  e i t h e r  

the beginning o r  the  end of the time i n t e n d .  

harmanic o s c i l l a t o r  (a brief invest igat ion on t h i s  problem has been completed). 

It i s  therefore  conjectured t h a t  the number of jump discont inui t ies  i n  the 

ad jo in t  so lu t ion  is  the  same as t h e  number of bounded state var iab les .  This 

. Gankrelidze's [4, 51 necessary conditions imply x3) 
Huwever, h i s  

In our prel-4 

This is  also t r u e  f o r  an 



b 

I 
i 

conjective. remains t o  be shown i n  t h e  above study (part ( c ) ) .  

Next, the  Invest igat ion of a bounded phase-coordinate problem having one 

real and a pair of complex conjugate charac te r i s t ic  roots  vill be started. 

It i s  intended t o  develop an algorithm for  t h e  the -op t ima l  control  problem 

first, and then an’ algorithm fo r  the problems with i n t e g r a l  quadratic cost  

c r i t e r i a .  

evaluated. 

These algorithms will be programmed on a computer, and the results 

The simulation will again be carried out i n  the  following order: ( a )  

construct analog simulation of plant  and cont ro l le rs ,  (b) develop block 

diagrams of cont ro l le rs  su i tab le  f o r  future mechanization, ( c )  develop simulation, 

analog and/or d i g i t a l ,  suitable for t e s t ing  of p r a c t i c a l  control  sys tem,  (a) 

compare with t h e  results f’rom ana ly t ica l  expressions, and(e) test  various 

ideas for  simplifying and approximating the  cont ro l le r .  

Finally,  the  same s teps  of invest igat ion will be applied t o  the sane c la s s  

of control  problems f o r  l inear  time-varying processes. 

f o r  p r a c t i c a l  systems, these systems w i l l  first be approximated by th i rd-  

order systems, then computed.and simulated by the methods developed i n  t h i s  

research. A carefu l  check of these results w i l l  determine the  r e l a t ive  merit 

If data are available 

Ul” this research. 
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6 .  m X  - OPT= CON!E@L OF AI? BOOSTER 

PTienlRnd [ZO] and Toohey [21] studied an optimal autopilot  design problem 

of an unstable booster with actustor position and r a t e  limits. 

plant t ransfer  function consisted of three poles i n  the frequency domain: 

Their simplified 
# 

one 

a t  or igin and two on the real axis with  equal magnitude but opposite signs. 

They simplified the problem -her liy cancelling the  pole a t  or igin through 

physical design. Essentially, the  simplified and normalized unstable booster 

is described by a second order d i f fe ren t ia l  system 
: A  A .  

x = A x + b u ( t )  

where 

I The problem i s  : 

(3)  

(a) t o  determine the maximum controllable region ( i n  9) in which every point 

can be steered t o  the or igin by a scalar control u ( t )  subject t o  the constraints 

l u ( t ) l  5 1 and I;(t)\ < - D on 10, tl], and 

(b) t o  flnd a time-optimsl control f'unction fo r  each i n i t i a l  s t a t e  in the 

controllable region. 

Friedland and Toohey solved the problem by other methods including computer 

simulation. In the  following, the  same problem w i l l  be solved by the method 

outlined i n  the preceding section. 

Booster Problem as Bounded Phase-coordinate Problem 

First, augment the system by defining x = u ( t ) ,  then the augmented system 3 
becomes 

k = A x + b v ( t )  (4) 

where * 

I 
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x(z)= 

] [l - c o s h ( ~ - s ) ]  v(s)  ds 
0 

rT 
i si& ( T - 8 )  V ( S )  d8 
0 

This b e c o a ~ s  a bounded phase-coordinate problem ( in  the sense I x  1' = tu1 5 1) 

i n  w h i c h  the  scular variable v ( t )  is required, subject t o  the constraint  

\ v ( t ) (  - < D on [0, tl], t o  steer system (4) ~ w n  an i n i t i a l  state X(O) = xo 

to x(t*) = o *ere t* = min. tl. 

3 

Assume t ha t  t h i s  control process is possible; then pPoceed by the method 

of "backing out of the ta rge t  x = 0", and write the system (4)  with time sense 

reversed (by deflning T = -t), 

1 

dx/dT = - A X(T) - b V ( T )  ( 5 )  

I 

with x(0) = 0. 

solution 

By the var ia t ion of parameters formula, the  system (5)  has a 

c 
1 

I PT 

where 1v(s)I - C D is admissible on [0, T] . The adjoint system f o r  the system 

( 5 )  is 

dQ/d, = - ( - A ) '  $(T) = A '  $(T) 

i n  which A t  E transpose of A. 

represent the extremal v as a multiple of the signum of an adjoint solution 

for the  bounded phase-coordinate contml problem, the  adjoint system must be 

modified. 

CanLrrelidze [4, 51 showed that ,  i n  order t o  

Thus a " to t a l  adjoint vector" p ( ~ )  must satisfy the relat ion 

i n  which 

A = : l  0 0 - io L O  0 "1 0 
In  so doing, the neces 

. 
ry 

3 

ondi t ion for v t o  be extrema1 can be expressed 



(a) P ( T )  s a t i s f i e s  the  systen ( 7 ) ,  

(b) p3(7) = 0 if Ix ( T ) I  = 1, 3 
( c )  

where l x l ( ~ ) l  = 1 ( f o r  t h i s  problem, p1 and p2 a re  required t o  be continuous 

and jumps can occur only i n  p 

P(T) is allowed ce r t a in  jump d iscont inui t ies  a t  endpoints of i n t e rva l s  

3 

since only x 3 3 
i s  r e s t r a ined ) ,  and 

sm P3 =I 0, if p = 0 3 

Thus, the  solut ion of the system (7) can be wr i t ten  a s  

P,(T) = pl(0) cosh T t pz(0) sinh T,  

p2(‘I) = pl(o) sinh T + pz(o) cosh T, 

P p  = I 3 

(10) 
fp l (0)  cosh T + p2(0) sinh ‘I + k, if Ix ( T ) [  < 1, 
\ O  , i f  I X  ( T ) !  = 1, 3 

where the  value of constant k i n  p (T) depends upon the  in t e rva l  I n  which 

Ix (7)) < 1, and upon pl(0) and ~ ~ ( 0 ) .  

The Extrema1 Controls 

3 

3 

To determine extrema1 controls as expl i  it t i n  Arnctions, form the  projec- 

t i o n  P as defined i n  the  preceding section. Let the  un i t  ad jo in t  vector  a t  time 

COS e COG g 

l s i a  e 
-X  < e,  g 5 X, ‘tl = i s i n  e cos @, - 

then, by equations (6)  and t he  def in i t ion  of E, 
r‘I p = J @;(e; 0,  $1 d s )  ds 
0 

i n  which 
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and Iv(s)l - < D is  admissible on [O ,  0 ) .  I$y the t ransversa l i ty  condition a t  

X(T) on aK(.r) ,  v(s)  i s  e x t e  on [O,T] if it m a w z e s  P. BY equation (81, 

the only possible values for v(s) are $ D and zero. 

determines the choice of either f D or  zero f o r  v(s) f o r  the following reason. 

When ! x  1 < 1, the system (4 )  i s  normal, and hence the  value of v can only 

be e i t h e r  +D or -D. When I x  1 = 1, by equations (a), (9) and (10) the value 

of v i s  zero, which implies tha t  x must s tay  on i t s  bound. ‘his conclusion 

i s  i n  agreement with Chang’s statement [22]  tha t  i f  the  system i s  time-optimally 

The condition I x  I = 11-11 5 1 
i 

3 

3 

3 

3 

controlled,  then e i t h e r  u i s  extemal or d‘/d? i s  extremal. 

For t h i s  par t icu lar  problem, the  function g ( s ;  7, 8, a), which i s  given 

by equation (U), has a property t h a t  

d s ;  7, 0, pl) = d s ;  ‘I, x+e, x - a ) ;  
hence, it suff lces  t o  consider only half of the range of 0 and ha l f  of range 

of gf. Ebr the convenience of discussion, choose -r( 5 8 - < 0 and -n/2 < < x/2. 

Then P becomes 
T 

P = COB f(s; 7 ,  e ,  a) [-v(s)] ds 
0 

where 

f(s; 7, e, 9) = COS e cosh(T-s)-cos +s in  e Sinh(T-S)- pl. 

(12) 
(a) 

df/da < 0 (4 only when 8 = T and 8 = 0). Hence, i n  t h i s  range of e, f(s; 7 ,  8, a)  
For ‘3*/4 5 8 - c 0, -“/2 < pl e ‘/2, and 0 - < s < T < 0, t he  derivative 

i s  monotone decreasing i n  s. 

(b) mr -A 5 8 < -3n/4, -“ /Z < gf < */2, and 0 < - s < I < -, the function f has 

maximum value a t  sm = T - t a n h - l  (tan e ) .  Hawever, f o r  tan-’ (tanh T )  e - 9 < ’3r(/4 

where tan-’(tanh 7 ) > -A, the  value of s is  negative which i s  not i n  the  range 

of i n t e r e s t  0 < s < 7 < 0 .  

Thus, for -‘ /Z < a < ‘/2 and 0 - -  < s < ‘I < ”, f is  monotone decreasing i n  s i f  

-a < tan-’ (tanh T )  5 8 < 0; o r  f has a maximum a t  sm = ?-tanh-l ( tan e)  if 

-g L e t m - l ( t a n h  e -3/4. m e m o r e ,  fo r  arly real k, f(sm+k; 7, e, = 

f(sm-k; 7, 8, $8) i f  -n < - e < */4; hence, f is  symmetric with respect t o  sm. 

m 

- -  

- 
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Therefore, f o r  a f ixed  T, a fixed 8 end a fixed a’, f(6; 1, 8, a) can be sketched 

on the i n t e rva l  0 C s < T. - -  
To determine the form of extrema1 v(s) t h a t  maXimize8 P, t he  method given 

For t h i s  pa r t i cu la r  pfoblem, how- by Schmaedeke a n d m  [23] can be used. 

ever, v(s) can be obtainea by inspection with a geometrical reasoning. 

t yp ica l  cases a re  shown below, one correSpOndS t o  fbeir ig  monotone decreasing 

i n  s and the other t o  f having a maxinu a t  some s 

Two 

> 0. rn 
I n  the  case shown i n  Fig. 1, the ranges are ‘3/4 < 8 5 0 and 1 / D  < T < - 3/D: 

hence, 

o r  

where 

f is monotone decreasing i n  s. %e form o f  extrema1 v(s) i s  

f l l  = 0 

[cos B[cosh(~-l/D)-l]  - s i n  8 s h h ( % - l / D ) > ,  

= -tan-’ {COS Q[cosh(.r/Z - 1/2D)-l]-sln 6 sinh(r/2 - 1/20)], 
@3 
a = (COS e-tm g)/(cos e - s in  e),  and 

p =&F - (cos e + s in  e>/(cos e - s i n  e )  

-1 gZ = -tan 

1 - 

By an inspection of the sketches i n  Fig.  1 with the  basic  requirement i n  mind 

t h a t  e i t h e r  Iv(s)l = D o r  1u(s)I = 1 on the  e n t i r e  i n t e rva l  0 < - -  s < T, it is 

easy to show t h a t  any deviation from of V(S) given above would decrease the 

value of f(s; T, 8 ,  $) [ -v(s)]  and thereby would decrease P. 
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For the case shown i n  Fig.  2, the ranges are 

-x < tm-’(tanh 5 / 2 ~ )  < e - < tan-’(tanh 3 / ~ )  < 9 4  and 

tanh-l(tan e )  + 1 / 2 D  < T < 4 tanh-’(tan e) - 7/D; hence f has a maximum at 

s = T -  tanh-l(tan e).  me form of extrema1 v(s) is m 

I ’  ( -D for 0 5 s < (2  sm - 1 / D ) / 3  
! 8, D for (2 sm - 1 / D ) / 3  < s < (4 6 

0 for (4  sm + 1 / D ) / 3  5 s 5 ‘I 
+ 1 / D ) / 3  if d 2  > fl 2 g1; m - i -v(s) = 

I 

or 

or  

‘\ 

+ 1 / D ) / 3  ’ 

I 
-D for o < s < ( Z  sa - 1 / ~ ) / 3  - [ 

, 
j 

D for (2 sm - 1 / D ) / 3  5 s < (4  s 

o for (4  sm + 1 / ~ ) / 3  5 s 
if g1 > $ ’ 4 ;  Y ( S )  = *,’ m 

T - ~ n ( a - p )  

I -D for  T - ln(a-8) 5 s 5 T 

where f14 = -tan-l{cos B[cosh 2 / D  - 13 - sin 8 sinh 2/D], and a l l  other parameters 

were defined previously. By an Inspection of Flg. 2 with the same argument given 

i n  the  previous case, the extrema1 v(s) must have the present fom. 

This procedure was carried aut for all the  possible cases. It was found 

t h a t  the  extremal v ( s )  reaches zero and takes off from zero as many as four 

t-8. Denote the time s at which such events occur by T ~ ,  1 = 1, ..., 4, and 
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It fiilows that choosing g (a)  to be continuous a t  'c2i+1 (i=o,1,2) requires 3 
) = 0, and hence 3 ( 'I2 i +1 

With p ( 8 )  so defined, the jump conditions have to be s a t i s f l e d  a t  'I2i, i=O,1,2. 3 
Since rl is  the unit adjoint vector a t  aK(T), therefore  p ( T )  = q 3 ( 7 )  = = s i n  @. 3 

Using the  expression for  p (s; 'I, 8 ,  @), it has at  most one jump discontinuity 

a t  8 = T (equivalently s t  X ( ' I ) ) ,  and t h i s  happens only when 1x (T)\ = Iu('I)[ = 1. 

lbrthermore, the  exp l i c i t  form of extremal v(s) can be expressed t is 

3 

3 

h - ( s ;  'I, e, pl) 7 
D 6 W I - j -  /cos pl J 

since cos jJ i a  pos i t ive  on -'/2 < gf < "/2 . 
condition [12], the  extremal v(s) i s  also the  tlnae-optimal v(s). 

Finally, by Russell's sufficiency 

The function p ( 6 ;  IC, e, a) for  the  two typica l  cases discussed previously 
3 

are also sketched In  Pygs. 1 and 2. The formulas for parameters 'Ii, i = 1,. .,4, 6, 

and go are obtained f o r  all possible cases in the ranges -* 5 8 5 0, '"/2 < jJ < '/2 

and 0 - < t < 0 .  The results are listed i n  Tables I t o  VI. 

!lXrne-optinuCl. Controls for the  Booster 

The s t a t e  vector X ( T )  can be readily computed from equations (6). Take a 

t y p i c a l  case as an example: 
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’*/b < 8 5 0, 1/D < T 5 3/D, 4 < < Pbr this case, t he  

extrema1 v(s) is  given I n  equation (14), hence by ln t e rg ra t ion  over [0, 73, 

(see ~ g .  1). 

%(T) = D sinh(l/D-T) + D sinh 7-1 + D h(a+g)  - [a+p-i/(a+p)] D/2 

%(T) = D cOSh(T-l/D) - D C06h T-D + [a- - l/(a+B)] D/2 
~ ~ ( 7 )  = 1 - D lA(U+p).  

3 Let a+@ = so t h a t  x ( T )  = U(T)  = 0, then 

{ 5 ( ~ )  
:?(T) = D [cash (T-~/D) - cash T - 1 + Sinh  1/D] 

D [Si&) (1/D - T )  + sinh T - S i n h  1/D] 

f o r  1 / D  < T - < 3/D. A Arrther choice of T = 2.5/D reduces the above t o  

f~.,-(2.5/D) = D [-sinh(la5/D) + sinh(Ze5/D) - sinh(l/D)] 

4 5(2.5/D) = D [cOsh(l.5/D) - ~06h(2.5/D) -1 + si&(l/D)I 

.x3(2.5/D) = 0. 

U s i n g  the results so obtained t o  solve the original booster problem s t a t e d  

i n  equation (3), reverse the  time sense once again. 

now s t a r t s  f’rom s = T and backs up t o  s = 0. 

equation (14) is now replaced by 

Thus the  extremal v(s) 

Since t = -T, It follows that 

D f o r  t 2 s > t - 1 / ~  

0 f o r  t - 1/D 2 s > ln(a+f3) 

for  h(a+p)  > s > 0. - -  
3 Since dx /dt  = v ( t )  i n  equation (4)  replaces dx /dT = -v(T) In equation (5), 3 

hence x 

(now t = 2.5/D ins tead)  can be interpreted as follows: 

= u (shown In Flg. 1) now reverses its sign. !bus, the  above example 3 
The control  

,- Ds, i f  2.5/D > s > 1.5/D 
I ‘ -1, i f  1.5/D> s > 1/D 

\ -Da, i f  1/D > 8 > 0 

- 
U(S) = 

I - -  
w i l l  steer the o r ig ina l  booster control  system (3) f r o m  the  ini t ia l  state 

(0) D[-~inh(l.5/D) + ~inh(2*5/D) - sinh(l/D)] i‘”l 
1 ?(O) = D[cosh (1.5/D) - ~08h(2*5/D) - 1 + ~inh(l/D)I 

with u(0) = 0 to t he  origin with a minimum tlme t+ = 2.5/D and u(2.5/D) = 0. 



-26- 

This example also i l l u s t r a t e s  the fact t h a t  the  parameters 8 and @ introduced 

i n  the adjoint vector 7 serve as en aid t o  derive the extrema1 V(S) only, they 

disappear i n  the final solution of the time-optimal control  problem. 

Maximum Controllable Region 

The maldrmun controllable region i s  determined by exmnlning the values 

of X ( T )  as 'I -, -. Among the  total of twenty d i f f e ren t  cases for large T i n  

Tables I - V I ,  

cases of (a)  '/2 > JJ 2 fl1, 3/D < 'I < - in Table I, and (b) '/Z > J3 - > g4, 

3/D < T < 0 i n  Table V I  as follows: 

the boundary of the region for u = 1 can be determined from the 

(a) By equations ( 6 ) ,  t h i s  case yield6 

: %(T) = D sinh(l/D - T )  + D sinh 7 - 1 

' ?(T) = D cosh(T - 1 / D )  - D cash T 

i X ( T ) = l  . 3 

4 -1 as 'I * which gives a equation X,+l 
"z 

Thus 

" 1 . + y Z = - l  for  u = 1. 

"1 + % = -1 + D [l - exp(-E/D)] f o r  u = 1 . (18) 

The boundary of the region for u = -1 can be obtained fYom other cases, 
x such as the  case of g4 2 @ 7 - /2, 3/D < T < 00 i n  Table I. However, since 

g ( s ;  r,e,t3) = g(s; 7, n+8, fl-a), (19) 

known relat ione will hold if all the signs of 5, 3 and u(=x,) are changed 

simultaneously. 
3 

Therefore, corresponding t o  equations (17) and (18), the boundary 

for u = -1 i s  given by 



-5 - xz = for u = -1 9 (20) 

-5 - 3 = -1 + D [ I  - exp(-E/D)] for u = -1 . (21) 

- -  
! 

The boundary of the  region for -1< u < 1 can be found f r o m  the  case 

of !ifl > @ > 3/D < T < 0 i n  Table I, which y ie lds  

(T) = D sinh (I/D - T) + D sinh T + D [ ~ / ( c L + ~ )  - (a+p)]/2 + D h(cu+p) - X + T )  r 5  
I 
%(T) = D cash (T - 1/D) - D Sinh T-D + D[l/(Cr+B) - (cZ+P)]/Z 

I 1 x3(T) = 1 - D h(a+p) , 

Since u = x and a+@ = exp[ (1-u)/D], hence the  limit a8 T + 00 y ie lds  3 
" 1 + x 2  = - u -  D{l-em [ - ( l -u) /D]]  for u = 1 -D ln(a+p) (22 1 

which reduces t o  equation (17) i f  u = 1, and t o  (21) i f  u = -1. rn the property 

of equation (19) and the  sane argument, the  other  boundary equation for  -1 < - -  u < 1 

can be deduced from (22) as 

-5 - 3 = u - DC1 - exp[-(l+u)/D]) for -u = 1 - D In (a+p)  . (23) 

Equation (23)  reduces t o  (18) i f  u = 1, and t o  (20) i s  u = -1. Consequently 

equations (22) and (23) determines t h e  m a x d  control lable  region (El@;. 3) for  

-1 < - -  u < 1. F i v e  4 shows the  rcgions f o r  1 / D  = 0.709, which agree w i t h  those 

given i n  Friedland's paper [ZO] when a sca l a r  fac tor  of 0.709 for x1 and 3 
axes a r e  considered. 
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PART C 

STOCHASTIC OPTIMAL CONTROL 

1. INTRODUCTION 

Stochastic control problems are concerned with the con- 

trol of dynamical systems which are random in some sense. A 

programmed control of antenna pointing system for the space- 

craft is one of many practical applications. A s  an axample, 

a programmed antenna requires excessive preflight calibration 

to permit reduction of fixed errors and compensation of vari- 

able errors within the requirements of a prescribed geometry 

of the antenna. It is known that the relative accuracy of this 

approach, even with comprehensive compensation equipment, is 

questionable. A possible way of improving the accuracy is to 

formulate the problem as a stochastic optimal control problem 

such that the spacecraft and its antenna pointing system are 

acted upon by random perturbations. The problem then involves 

the determination of a control law which maximizes the probability 

of the antenna's pointing at the desired direction within a pre- 

scribed allowable tolerance. 

In the following sections, a discussion on a method of 

stochastic optimal control is presented. Section 2 gives a 
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brief summary of the work done to date in this area. Section 

3 presents the formulation of the stochastic problem that is 

under investigation. The method of solving the problem is dis- 

cussed in Section 4. Because of the complexity of the stochastic 

problem, the notation for the mathematical description is un- 

avoidably tedious. Appendix I is written for the purpose of 

clarifying the definition of the notation which will be used 

repeatedly in the discussion of the problem. Appendix I1 ex- 

plains the difficulties of the mathematical treatment of 

stochastic differential equations, and the equivalence of 

formulation between Stochastic differential equations and 

integral equations. The stochastic pursuit problem solved by 

Mishchenko and Pontryagin r l l ]  is summarized in Appendix I11 

in which the notation is carefully selected to agree with the 

definitions given in Appendix I. Their results constitute a 

part of the solution to the stochastic control problem. Appendix 

. IV Zisc.c?sses the  cnmpetation of the transition density of the 

stochastic control process. ' 

2 .  BRIEF' REVIEW OF STOCHASTIC CONTROL PROBLEMS 

A great deal of the work done to date in the field of 

stochastic optimal control has been an attempt to develope 

the subject along lines analagous to the deterministic theory 

by dealing with expectations of certain random variables, e.g. 
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integral performance indices. Kalman rll for example, solves 

the following problem. Let a state vector x of dimension m be 

defined by 

dx 
dt 
- -  - F(t) x + G(t) w(t) 

where P(t) is an m by m matrix whose elements are continuous 

functions of t, 

w(t) is a random vector of dimension C 6; m 

G(t) is an m by .( matrix whose elements are continuous 

functions of t. 

Let a vector z of dimension k L m be defined by 

Z = H(t) x -I- V(t) ( 2 . 2 )  

where H(t) is a k by m matrix whose elements are continuous 

in t, 

v(t) is a random vector of dimension k. 

Furthermore, w and v are sample functions of independent random 

processes with zero mean and covariance matrices of the form 

cov[w(t), w ( T ) ]  = Q(t) b(t-7) 

cov[v(t), v(T) I = R(t) b(t-7) 

where Q is a time-varying, symmetric, nonnegative definite, 

continuously differentiable, 4 by 4 matrix, 

R is a time-varying, symmetric, positive definite, con- 

tinuously differentiable, k by k matrix, 



-40- 

Then Kalman [l] finds an estimate G(t1 It) of x(t1) of the form 

where A is an m by k continuously differentiable matrix, which 

minimizes 

where E denotes expectation conditioned on z ( T ) ,  
Z ( T ) ,  to'TSt 

to< 7 st, 

B is a specified m by m constant matrix, and (,> denotes 

inner product. 

Kushner r2] considers a system defined by 

where f is linear in x and u 

x is an m- dimensional vector. 

u is an 4% dimensional control 

6 is an m- dimensional random vector. 

with a cost criterion 
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where g is quadratic in x and u, and T is fixed. He gives 

a method of correction to optimal deterministic control when 

the effects of 6 are small. He extends this work [ 3 ] ,  [4], 

[SI, [ 6 3  to develop a stochastic maximum principle, complete 

with adjoint equations and a stochastic version of the Hamiltonian, 

for the minimization of 

E (c, x ( T ) )  (2.9) 

subject to dt = f(x, u) dt + ~ ( x ,  u) dz 

where c and x are m- dimensional vectors 

u is an C % m dimensional control 

~ ( x ,  u) is a weighting matrix 

z is a sample vector of a random process. 

( 2 . 1 b )  

Later, Kushner [73 solves essentially the same problem by a 

technique involving a stochastic version of Lyapunov functions. 

In this paper, z is assumed to be a sample function of a 

--. wiener F K C X ~ S S .  IC order f c r  (2.15) to he meaningful. it is 

necessary to interpret it according to Ito (see [83, chapter 
a 

VI, $ 3 )  

The theory of stochastic stability referred to in [ 7 1  is 

developed by Wonham [g] and Kushner [ l o ] .  Various types of 

stability were a l so  defined and then discussed. 

In most cases, the expectation of a random variable is 
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not t h e  m o s t  appeal ing performance index. A s  a ma t t e r  of 

f a c t ,  such an  index i s  used mainly f o r  t h e  mathematical con- 

venience.  It i s  t r u e  t h a t  even i f  the  d i s t r i b u t i o n  of a 

random v a r i a b l e  i s  n o t  known, i t s  var iance  p l a c e s  a bound 

on t h e  p r o b a b i l i t y  of i t s  displacement from i t s  mean. T h i s  

i s ,  however, a rather crude bound. Only i n  s p e c i a l  cases, 

notab ly  t h e  Gaussian case, does a knowledge of expec ta t ions  

g i v e  very precise information about error p r o b a b i l i t i e s .  

Pontryagin and Mischenko [ll] have solved a n  e n t i r e l y  

d i f f e r e n t  problem. They considered a control led p o i n t  i n  

t h e  s t a t e  space i n  p u r s u i t  of another  po in t .  The s t a t e  v a r i -  

ables of t h e  pursued po in t  a r e  sample func t ions  of a Markov 

process .  The performance index i s  t h e  p r o b a b i l i t y  of "capture"  

of t h e  pursued p o i n t  by  t h e  c o n t r o l l e d  po in t  dur ing  a 

s p e c i f i e d  t i m e  i n t e r v a l .  The pursued po in t  i s  considered 

"captured" if t h e  c o n t r o l l e d  po in t  i s  brought w i t h i n  some 

s p e c i r l e d  spt;erical neighborhood of it. . C .  

It might be argued t h a t  t h i s  approach lacks appeal 

on a t  l e a s t  t w o  grounds: 

1. How o f t e n  i s  a c o n t r o l  system asked t o  guide  an object 

toward another  object whose motion i s  Markov? 

2 .  The  s o l u t i o n  presented by Pontryagin and Mischenko 

assume only a knowledge of t h e  i n i t i a l  p o s i t i o n  of 

t h e  pursued object. Is t h e  assumption real is t ic?  
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Granting t h e  v a l i d i t y  of t h e s e  p o i n t s ,  the work done by  

Pontryagin i s  a p p l i c a b l e ,  after some manipulation and addi- 

t i o n a l  development, t o  a more appealing problem. T h i s  problem 

i s  t h e  subject of t h i s  research.  For t h e  purpose of convenient  

reference ,  t h e  pursui t  problem and its  s o l u t i o n  a r e  descr ibed 

i n  more d e t a i l  i n  Appendix 111. 
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3 ,  PROBLEM STATEMENT 

The problem to be considered is that of bringing the 

state of a system under the influence of additive noise 

from an initial state to some spherical neighbbrhood of 

the state space origin within a time interval with a 

maximum probability. The formulation of the problem is 

based on the following reasons: 

1. It is a logical modification of a well-known class of 

deterministic optimal control problems, 

2. A broad class of engineering systems are subject to 

additive noise, and 

The performance index of maximum probability is highly 

appealing. 

3 ,  

The investigation will be aimed at the linear case. 

To be more precise, it is desired to determine the vector u 

which maximizes 

Prob[(l x (T)  \ \  s t 3 for some 0 C 7 S T ( 3  1) 

subject to 

- A(t) x + B(t) u t C(t) n; x(0)  = xo dx 
dt 
- -  (3.2) 
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where x is an m dimensional vector, 

A is an m by m matrix, 

u is an .t C m dimensional vector, 

B is an m by 4 matrix, 

n is a k J; rn dimensional sample vector of a random 

I 

process, 

C is an m by k matrix, 

c ,  T, and x, are given as part of the problem. 

The determination of the restrictions on A, B, C, u, 

and n are part of the research problem. 

4. TECHNICAL APPROACH 

Method of Approach 

The problem described in the preceding section will be 

investigated in the following manner: 

(A) Compute the transition densities of a state vector 

defined by 

dz 
dt - a= -A(t)Z - C(t)n 

z(0) = 0 

(B) Compute u to maximize 
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subject to 

t 
I .  

9 = A(t)y + B(t)u 
dt 

Y(0) = xo 

The method of approach is motivated by the advantage 

of the superposition property of linear systems. A proper 

translation of the coordinatc-system reduces the present 

problem to Mishchenko-Pontryagin's pursuit problem which is 

summarized in Appendix 111. Thus, if the statistics of the 

z-process is in agreement with the hypotheses for the pur- 

suit problem, then the known results can be used to complete 

the solution. The work to date has been concerned with 

establishing the conditions on the n-process which make the 

z-process Markov, and the computation of the z-process 

transition densities from the n-process statistics. 

Preliminary Resuits 

A preliminary result (see Appendix 11) is that if the 

z-process is Markov, then it is also a process with inde- 

pendent increments, and the n-process is white noise. 

These properties (see [81,[12]) require that (4.1) must bo 

written as a stochastic equation. 

may be possible to estimate the transition densities of z 

in terms of the statistics of n. 

Appendix IV shows how it 
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Plan of Future Work 

The investigation will be divided roughly into two 

categories, viz., theoretical and computational. 

The,theoretical work includes the following items: 

1. The amplification of t h e  work in Appendices I1 and IV 

into rigorous arguments. In particular, the assumption 

of the convergence of sequence {pIi } discussed in 
E l )  

Appendix IV must be justified. 

will be developed. Ii - PI 2. An error estimate for p 
m E ' 1  

3. The conditions on tile no i se  thzt  cjuarantec z-process 

satisfying the hypotheses of the pursuit problem 

[see Appendix III] will be determined. 

The computational work includes: 

1. The development of a computer program for the computation 

of 

a) z transition densities from noise densities; 

b) optimal controls from z transition densities: 

c) probability of "capture" under optimal control . 
The use of this algorithm to investigate the relation- 2 .  

ships among 

a) noise statistics, 

b) optimal control signal, 
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. 
c) system parameters, 

d) optimal performance, and 

e) initial conditions, time interval, and target 

neighborhood size. 
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APPENDIX I 

The purpose of this appendix is to define notation. 

Let (0, 9, p) be a probability space. Let Y,, Ya , . . . 
be random vectors from 0 to E . That is, m 

Y =  i 

and for every o t 52, there m is a y g E such that 

= Y .  (0) = 
1 

m 
Furthermore, for every Bore1 set B in E , 

(I . 1) 

The distribution function P (y), from Em to the real 
'i 

line, is defined as follows: L e t  A c Q be the set of 

0 c SA f o r  which 

Y. (U) < Y 
1 

(I .4) 
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or0 in componen,-w,se notation, 

then 

The joint distribution function 

from the  Em X Em X ..* X Em (k + 1 factors) product space 
to the real line is defined as follows. 

set of W c 0 for which 

Let Ai c B be the 

is defined as follows. Let Ai be the w set for which 

(I . 10) 
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m Let Bi be a Bore1 set in E . Let 

Let 4 

i=l 
c = n  ci 

m 
Let B be the set in x x ... x E ( 4  factor) 8 

L 
B - I I  B 

i=l i 

(I . 11) 

(I. 12) 

(1.13) 

Then the function of (1.9) is defined a8 that function 

satisfying 

Finally, the conditional density 

(1.14) 

(I. 15) 

is defined as 



APPENDIX I1 

This appendix discusses the circumstances-under which 

the process defined by (11.3) is Markov. The fact that the 

point of definition is (11.3) rather (11.1) has much 

significance. As a matter of fact does not even exist. 

This follows from the fact that the z process, as will be 

shown, is a process with independent increments [ 8 ] ,  which 

creates a mathematical difficulty for (11.7). This difficulty, 

however, can be avoided by utilizing the concept of stochastic 

differential equations [8l, [12]. The integral of (11.3) 

exists in a very slightly modified form as a stochastic 

integral [81. This form of integration is compatible with 

the arguments contained in the  remainder of the Appendix. 

Consider a random vector z(t) defined by 

g(t] = A(t) z(t) + C(t) n(t) 8 z(0) = 0 (I1 . 1) 
where n(t) is also a random vector with less than or equal 

to the number of elements of Z(t) # 

A(t) and C(t) are matrices of suitable dimension 

Let (P(t,T) satisfy 
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4, ( 7 , ~ )  = i d e n t y  ma t r ix  with same 

rank as  A. 

Then 

(11.3) 

provided t h e  i n t e g r a l  exis ts .  The ques t ion  t o  be answered is: 

Supposing t h e  z process is Markov. What does t h i s  s a y  about 

t h e  n process? 

I n  o rde r  t o  f a c i l i t a t e  the d i scuss ion ,  some n o t a t i o n  

w i l l  be in t roduced  first.  Let 

t, 

I n  t h e  s u b s c r i p t i n g  of t ,  the convention 

j > k > O ; > t  > t k > O  
j 

(11.4) 

(11.5) 

(11.6) 
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w i l l  always be followed. An obvious i d e n t i t y  which w i l l  be 

used repeatedly ( t a c i t l y )  i s  

(11.7) 

If t h e  z process is  Markovian, it is necessary t h a t  

This  w i l l  be done i n  t w o  s teps .  A r e l evan t  lemma w i l l  be 

discussed f i r s t .  

Proof N o t e  t h a t  

(I1 . 9) 



-55 - 

t h e  hypothes is ,  then  is 

The only  q u a n t i t y  upon which bo th  sides of (11.11) are 

dependent is 23 -za. Therefore ,  

Next, no te  t h a t  

o r ,  f r o m  ( 1 1 . 1 2 ) #  

(11.14) 
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From (II.ll), (11.12) and (11.14) 

Proof B y  t h e  Lemma, 

(11.16) 

Now 

A l s o  f rom t h e  Lemma, 

(11.18) 

hence (11.16) ( I I . 1 7 ) ,  and (11.18) yield 
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This  e s t a b l i s h e d  the  f a c t  t h a t  any t h r e e  success ive  i n -  

crements a r e  independent.  A s i m i l a r  handl ing  for m success ive  

increments y i e l d s  t h e  same r e s u l t .  The z process, t h e n , i s  one 

wi th  independent i n c r e m e n t s ,  

t and I 
t j + 2 8  j + 3  t . t  Next, apply t h e  law of t h e  mean t o  I 

3 l+l 

- - 
It t 

j j + l  

I 
t j + 2 t j + 3  

Since  t h e  z process is  one wi th  independent increments,  

and I and independent for  every  choice  of 
I t j t j+l  t j+2 t  j + 3  

0 < t j ,  < tj+l. < tj+2 Then n ( 6 )  i s  dependent of n ( v )  

f o r  every  0 < 6 < v. This  means t h e  n p rocess  be ing  "white." 

tj+3 . 
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APPENDIX I11 

The pursuit problem [ll] can be stated as follows. Let 

x be the m- dimensional state vector of a system defined by 

(111 . 1) 
x ( 0 )  = x, 

where u is the control vector. 

Let z be the state vector of a randomly moving point. 

that z is a sample function of a Markov process with tran- 

Given 

- : t < r r -  A n n e ;  t t r  
J S . L C I V A A  U-aa-.- - 

(111 2) 

where the right-hand side is as defined in Appendix I. 

Further conditions imposed on the process are: 

ba p(a, v ,  T ,  t) exists and is continuous for every (111.4) 
aoia?7 

0 ,  q* T r  > ( T I  L j 

i = 1, 2, ..., m. 
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z(0) = zo is known (111.7) 

a ( 0 ,  q) , bi(D, q )  are continuous for o > 0 (111.8) ij 

The eigenvalues of [a 3 are positive and bounded, (111 e 9) ij 

and 

(111.10) 

The problem is to find u that maximizes the probability 

that 

(111.11) 

f o r  a given €70 and for some T C L O ,  T] where T is given. 

The problem is solved as follows. The functional 9 ( 0 ,  y, T )  
U 

is defined as the probability that the randomly moving point 

is captured between times Q and T given that Z(D) = y, and 

that the control function is u. If the functional 9 were 

available, it would be straightforward to apply the maximum 

principle, and thus solve the problem. The following is an 

outline of Pontryagin's approximation to 9 (0, y ,  7 ) .  

U 

U 

The first s tep  is to show that 0 (0, y, T )  is a solution to 
U 



-60 - 

i 

(111.12 j 

! 

subjec t  to  t h e  boundary condit ions  

where So = surface  defined by I I x(o)  - Z ( U )  I I = c 

A s o l u t i o n  i s  then obtained i n  the form 

(111.14) 

where m i s  the dimension of the s t a t e  space,  and r, for t h e  

c a s e  where a and b are  independent of u or y, i s  g iven  by i j  i 

(111.16) 
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A .  are  t h e  e igenvalues  of [a 1 
1 i j  

(111.17) 

(I11 18) 

(111 . 19) 

vg (7) = e igenfunct ion s a t i s f y i n g  (111.20) 

(I11 21) 

9 

S = a continuous c losed  surface  defined by 

(111 22) Zxf(11) i 2  = 1  
1 

(0 = angle  between the radius vector  p from q to q 
1 

and the normal to S a t  71 . 
1 

(111 23) 

The c a s e  for a and b .  which are  dependent upon o and i j  1 

y i s  a l s o  s o l v e d ,  with resu l t s  i n  much t h e  same form, but 

s l i g h t l y  more complicated. 



APPENDIX IV 

, 

This aDpendix discusses the computation of the tran- 
I 

sition densities of a process defined by a stochastic dif- 

ferential equation (1V.l). It is  interpreted that the 

integrals of the two members of (IV.1) are equal. It turns 

out [ 8 ]  that, in the usual stieltjes sense, the integral 

where C(t) is an m by 4, continuous martix, 

F- is a sample vector (with dimension C < m) of a 

rancioiii ~ ; r c e e s s  with independent and orthogonal 

increments. 

does not exist ( w i t h  probability 1) because the sample 

functions of processes with independent increments are of 

unbounded variation with probability 1, 

be redefined as a stochastic integral [8] so that it does 

exist. Under this definition, the limit of the sequence of 

Stieltjes sums exists in an . C . i . m ,  sense. 

This integral can 

Consider the stochastic differential equation 

dz = A ( t )  z dt + C(t) dn (IV.1) 
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I 

where z i s  an m- dimensional vector, 

A ( t )  i s  an m by m continuous matrix,  

C ( t  ) and n are def ined previous ly  . 
The s o l u t i o n  i s  known a s  ([a], [12]) 

(IV.2) 

where +(t,  T )  i s  the m by rn continuous matrix s a t i s f y i n g  

a 
dt 

4(t,  7 )  = A ( t )  @(t, 71,  

@(7 ,  7 )  = i d e n t i t y  matrix 

(IV.3)  

( I V . 4 )  

and 

where 

7 i = q and 7, = 6 ,  

be random variables. 

The t r a n s i t i o n  dens i ty  
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where the p's are defined in Appendix I. 

The sequence biv} converges to I 
E r l  

in an d.i.m. sense as described by Doob 181. A question 

arises as to the conditions upon which the convergence of 

in a suitable sense as i 4 0 .  Once the convergence 

is established, then, (IV.6) implies that the z- process 

transition densities can be approximated by the conditional 

, The investigation of the conver- I Ii densities p i 

gence problem will be deferred for the future study, The 
7 z T z  0 .  T i  
I 

computation of the conditional densities, however, will be 

discussed in the following. 

In order to facilitate the discussion, the problem 

will be restated in the following notation. Let Y be a 

random vector or' dimension z dafir?ed hy 

kq 

and S be a random vector 
qr 

r 
s = C Y  
qr k=q kq 

To express the conditional 

defined as 

density 

(IV.8) 
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i n  terms of n s t a t i s t i c s ,  the fol lowing two s t e p s  a r e  re- 

qui red :  

(1) The Y s t a t i s t i c s  w i l l  be w r i t t e n  i n  t e r m s  of n 
kq 

s t a t i s t i c s ,  and 

( 2 )  t h e  d e s i r e d  S d i s t r i b u t i o n s  w i l l  be w r i t t e n  i n  terms 

of Y s t a t i s t i c s .  

For  t h e  f irst  of these two s t e p s ,  cons ide r  t h e  dimen- 

s i o n  of t h e  elements of ( I V . 7 ) :  

kq 

Y,-- i s  an m- dimensional v e c t o r ,  

"('k+l k 

@(Tq 

-Y 

) - n(7 ) i s  an c m dimensional vector, 

T k )  C ( 7  ) i s  an  m by 4 matr ix ,  and is as- 
8 k 

sumed t o  have rank 4 .  

T o  f a c i l i t a t e  t h e  d i scuss ion ,  l e t  

(IV.9) 

(sv. 10) 

A l s o ,  s u p e r s c r i p t s  w i l l  be used  t o  denote  v e c t o r  e lements ,  

e.g. the i- e l e m e n t  of Ank is .Qnk. t h  i Thus (IV.7) becomes 

i 
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From t h e  dimensional cons ide ra t ions  s t a t e d  earlier, 

.c (IV.11) r e p r e s e n t s  a mapping of E i n t o  a subspace,  *, of 

Em. The next  s t e p  i s  t o  cons t ruc t  a s u i t a b l e  "coord ina te"  

be an  orthonormal 
.ckq 

system as follows. Let vlkq, ..., v 

be an ortho- 

be t h e  m x L mat r ix  whose 
*q 

..., v Gkq ' # v  lkq ' basis for \k. L e t  v 

m normal basis f o r  E . L e t  V 

columns a r e  v 

mat r ix  whose columns a r e  v 

there is a u n i q u e  m- dimensional v e c t o r  CL such t h a t  

-Lkq 
be the rn by m 

For every Y 

mkq 

mkq 

and l e t  V 
k q  

. . . I  v lkq 

kq' 
. * e #  v lkq 

(IV.12) 

form a b a s i s  f o r  
mkq 

t h i s  i s  t r u e  because t h e  columns of V 

Em. 

basis for  *, t hen  

form a 
a q  

Moreover, s i n c e  t h e  f i r s t  4. columns of V 

i f  Y ca. Thus Y €$is equivalent t o  
kq kq 

Y )i = 0,  i = 4 . +  1 ,  ..., m. @ikq kq 

From (IV. 11) 

w h e r e  T denotes  t ranspose .  From (IV.14) and (IV.15) 

(IV.13) 

(IV. 14) 

(IV. 15) 
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(IV.16) 

where 6 is the  Dirac d e l t a .  T h i s  completes t h e  f i r s t  of t h e  

t w o  steps. 

For t h e  computation of ps , it i s  noted t h a t  
q r J S O ,  q-1 

t h e  cond i t ion ing  v a r i a b l e i s  a linear combination of those A n ' s  

Since  t h e  & ' a  are independent,  
q r '  

w h i c h  do not  appear  i n  S 

hence 

( I V . 1 7 )  

From (IV.17) and (IV.81, 

q, r-1) ( I V . 1 8 )  
S - 6  

q, r-1' qr (s Y 
q, r-1, rq 

Jdsq, r-1PS 

Since  t h e  An's are  independent, 

(IV.19) 

Thus ( I V .  18) becomes 
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By applying the same procedure repeatedly, one obtains 

(IV.21) 

which gives the conditional density in terms of Y statistics. 
kq 
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